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PREFACE 

The nxork described in this rzport was performed by the 

Engineering Mechanics Division of the Jet  Propulsion Laboratory. 
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PBSTRACT 

Since the lower resonant frequencies are of i n t e r e s t  I n  most 

s t r u c t u r a l  problems, a s i g n i f i c a n t  reduct ion of independent variables 

i s  poss ib le  by t h e  use of the normal modes o f  s t r u c t u r a l  subsystems as 

indepeadent var iab les .  

This Icenorandun descr ibes  a %echnique tha% cwA SP B e d  t o  

generate equivalent  spring-mass models f o r  the ncrnal modes of a structural  

subsystem when the general ized mass IIlatrix and resonant freqiiencies are 

available. Where modal t r u n c a t i m  is employed, the r c s i d u a l  mass metrix 

i s  used t o  preserve the  correctness  of t he  rigid-body mass proper t ies .  

Applications of t h e  modeling technique arid the r e s i d u a i  mass 

matrix are discussed. 

vi JPL Technical Memorandum 33-380 



INTRODUCTION 

Since t h e  Jnver resonant frequencies &re of i n t e r e s t  i n  many 

s t r u c t u r a l  problems, a s i g n i f i c a n t  reduction of independent var iab les  is 

made poss ib le  by t h e  use of t h e  normal modes of s t r u c t u r a l  subsystems as 

independent var iab les .  Thz representa t ion  cf t h e  normal modes of t h e  

subsystems as uncoupled s i n g l e  degree--ot--freeG im spring-mass systems s impl i f i e s  

t he  t a sk  of combining two s t r u c t u r a l  subsystems which are at tached ais a 

comon poin t  and i t  puts  t h e  information i n  sue\ a form t h a t  most s t r u c t u r a l  

analysis  computer programs can be used t o  evaluate t h e  normal modes of t h e  

t o t a l  s t ruc tu re .  

This repor t  uses well-known concepts to develop a technique of obtaining 

an equivalent spring-mass systern f o r  each normal mode when t h e  dynamic 

charac te r i s  tics of t h e  s t r u c t u r a l  subsystem are ava i l ab le  as a generalized 

mass matrix and associated resonant frequencies.  The dynamic c h a r a c t e r i s t i c s  

of a continuous subsystem can thus be combined with a d i s c r e t e  system because 

t h e  continuous subsystem can be represented by a se t  of mutually independent 

single-degree-of-freedom systems. 

A descr ip t ion  of t h e  procedure is t o  renormalize each normal mode such 

t h a t  i ts reac t ions  are represented by those of a corresponding s i n g l e  degree-of- 

freedom equivalent  system. 

t h e  model t o  represent  t h e  rigid-body cont r ibu t ion  of +he t runcated normal 

modes. 

Incremental t n e r t i a  proper t ies  must be added i n  

To help i l lustrate  t h e  ideas ,  a simple model is q u a l i t a t i v e l y  described. 

The model is a representa t ion  of s t r u c t u r e  A, a cant i levered beam, at tached 

t o  a s t r u c t u r e  B as shown i n  Figure 1. 

JFL Technical Memorandum 33- 380 1 



n 1s t Mode 2nd Mode i t h  Mode 

i 

Struc ture  A 

St ruc tu re  B 

S t ruc ture  A 

R1 R2 Ri 

Fig. 1 INITIAL STRUCTURE Fig. 2 CANTZLEVER MODES OF STRUCTURE A 

The equivalent s i n g l e  degree-of-freedom system f o r  each normal mode of 

S t ruc ture  A (Fig. 2) is normalized afid represenced such t h a t  each reac t ion ,  

Ri, is properly simulated when combined with S t ruc tu re  B as shown i n  Fig. 3. 
i , Ki Mi 

2 

n 

S t ruc tu re  B c 3  
Fig. 3 MODELED STRUCTURE 

0 " r ig id  m a s s "  

0 "sprung mass" 

The " r ig id  mass" i n  F,g. 3 represents  t h e  cont r ibu t ion  of t h e  t runcated 

modes t o  t h e  rigid-body mass prope r t i e s  of S t ruc ture  A. 

The procedure t o  def ine equivalent s i n g l e  degree-of-freedom systems is 

developed for t he  general  case wherein s i x  base reac t ions  are represented by 

th ree  orthogonal force  components and three or thogmal  moment components. 

Appendices 1 and 2 discuss systems with fewer base reac t ions  t o  a i d  in t h e  

explanation of the  ideas.  

2 JPL Techn ica l  Memorandum 33-380 



ANALYSIS 

The equilibrium - Equations 

The equilibrium equations f o r  any d i s c r e t e  o r  continuous l i n e a r ,  undamped, 

s t r u c t u r a l  subsystem i n  terms of its rigid-body modes and its a r b i t r a r i l y -  

normalized c h a r a c t e c i s t i c  modes are, i n  matrix form: 

I 
0 ' 0  ! 

I -  

0 1  1 K,, 
= {F) 

Where 

[MLb]= m a s s  matrix,  rigit?-body modes - 
I [M,J- [aNd = i n e r t i a l  coupling matt x,  rigid-body and normal modes 

[Mdd]= diagonal matrix of generalized masses i n  normal modes 

[K,J= [@lMN,]= t h e  diagonal. s t i f f n e s s  matrix 

{ p,) = vector  of generalized displacements i n  rigid-body modes 

{pw\ = vector  of generalized displacements i n  normal modes 

(-) = second t i m e  de r iva t ive  of ( ) 

{ F) = generalized force  vec tor  

Eq. (1) may apply t o  a s t r u c t u r a l  subsystem with i n e r t i a  r e l i e f  f.n some 
- -  

rigid-body degrees of freedom, i n  which case t h e  r e l a t e d  

terms are zero. 

aRN and M,, 
Here t h e  normal modes are t o  b e  regarded as applying t o  f u l l y  

c a n t i h v e r e d  s t r u c t u r e s  . 
Let. x a  ( i  =/, 2,3) denote a set of orthogonal reference axes with o r ig in  

L * 
at t h e  base point . The vec tors ,  U ( L  = 4 2, 5J , represent  t r a n s l a t i o n a l  

L 

* 
The b m e  point  is t h e  point  where t h e  model 
discussion is at tached t o  another s t r u c t u r a l  subsystem, e f f e c t i v e l y  at  a point.  

i t h e  s t r u c t u r a l  subsystem under 

TPL Technical Memorandum 33-380 3 



displacements (Fig. 4 )  and the vectors, * (;'= .u', 3: d )  represent rotational - L . 4 .  .dL 9 and 
- c 

displacements. Unit vectors are i 

Fig. 4 RIGHT-HAND COORDINATE SYSTEM 

The displacement vector of a point an the structural subsystem is  

where 

[(#JR] = rigid-body transformation matrix 

R X S matrix of normal-aode displscements at the point, 

where I 6  , and S = number of normal modes. 
t 4 N I =  

The original equilibrium equations can tr written in a form also applying 

to a system of single-degree-of-freedom spring-mass elements, -ach of which 

represents a normal mode. The following analysis leads to such a system. 

4 JPL Technical Memorandum 33- 380 



The Mass Matr ix  

th 
For the  td noma1 mode, a renormalization f a c t o r  is defirA-i: 

( I f  t he  numerator is zero, use M 4N’ GI SU)  MG,,,j 
* 

The renormalized elements i n  the  complete matrix are 

It follows t h a t  

If t he  modes a r e  i n i t i a l l y  so normalized, then 1J 4 is uni ty ,  anJ subsequent 

appl ica t ion  of the  cr i ter ia  [Eqs. (3) and ( 4 ) J  produces no change. 

The lumped-mass system equ’valent t o  che contint )as o r  d i s c r e t e  s t r u c t u r a l  

subsystem is described i n  terms of selected normal modes, with t h e  complste 

model represented by t h e  sum of such modalmodels. 

Wl A mass with magnitude is r e s t r a ined  t o  move p a r a l l e l  t o  t h e  vec tor  w - 
M i-t M 
moment arms, Y., 

3- M i. The l i n e  of ac t ion  of M,, is placed such t h a t  
3N 
, about t h e  y *  axes are 

IEI 2 N 5  

( L t 3 )  El L 

* 
Mass terms with a bar  represent t he  o r i g i n a l  m a s s  terms, and without a bar  
t h e  renormalized mass tenus. 

JPL Technica l  Memorandum 33-380 5 



If fd = 0 (i = 1, 2,  3), the  loca t ion  of t h e  ro ta tory  i n e r t i a  can be I N  
chosen a r b i t r a r i l y ;  h o W e g 2 L ,  t h i s  i n z r t i a  i , L -  constrained t o  r o t a t e  about an - - 
axis  p a r a l l e l  t o  t h e  vector: M 4 M  T+ M3.Ni -f- r4, P N  A *  

For the  pa m t ,  a d i s t i n c t i o n  is  made between a no rm1  node o f  t he  

o r i g i n a l  d i s t r i b u t e d  (D) s t r u c t u r e  and i ts  equivalent I m p e d  (L) t y s t e m  by 
D 

use of le t ter  su: r s c r i p t s .  The motion of t h e  modal mass, corresponding 
dEJ 

t o  a un i t  rigid-body t r a r s l a t i o n  is 

(i = 1, 2,  3) 

For a u n i t  rigid-bodg r o t a t i o n  about., say, t h e  ;1! a x i s  
2 

, i n  general ,  

By def in i t i on ,  

Subsequently, t he  supe r sc r ip t s ,  L and D, w i l l  be omitted. 

6 YPL Technical Memorandum 33-380 



th lrom Eqs. (8) and (9)  the complete mass matrix for the i-4 normal-mode 

equivalent may be  written hg 

or 

* b 

0 

- 

c 

m 

! 

I 

I 
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The S t i f f n e s s  Yat r ix  

where 

th 
A f t e r  renormalization, t he  s t i f f n e s s  matrix f o r  t he  p,J normal mode i s  

0 
- - -  1 0 

I 
! 
t 
I 
I 

The o r i g i n a l  s t r u c t u r a l  subsystem represented by S normal modes can be 

replaced by an equivalent  discrete model comprised of S independent s ing le-  

degree-of-freedom sp r ing  mass elements. For the  N node, t h e  m a s s  is constrained t h  

t o  move along a prescr ibed l i n e  of ac t ion .  

spr ing  of s t i f f n e s s  dN 

Elastic r e s t r a i n t  is  provided by a 
2 

The s o l u t i o n  can be s impl i f i ed  by e l imina t ing  t h e  ca l cu la t ions  necessary t o  

determine t h e  vec tor  desc r ip t ion  of t h e  l i n e  of act ion.  Moreover, i t  can be 

made adaptable  t o  s t ruc tu ra l - ana lys i s  computer programs t h a t  allow r e s t r a i n t s  

i n  only one coordinate  system. 

Accordingly, t h e  displacement system of Eq. (3), .dhich provides f o r  absola te  

base-point motion, is used. 

L e t  uB = base-motion vec to r  

u = modal dLsplacement, i n  t h e  absolu te  re ference  sysrem, of t he  N 
t h  po in t  m a s s  represent ing  the  N normal mode 

For t h e  s i n g l e  po in t  m a s s ,  M,,, 

and, f o r  base motion 

8 JPL Technical MerrAorandum 33- 380 



I n  pa ra l l e l  w i t h  E q .  ( 7 ) ,  t h e  row matrix 

i @ d R J  =l',R! where M,, is sca l a r .  

Then i%l 

Premultiplying both s i d e s  of Eq. (12) by gives  

t h  Tne cont r ibu t ion  of t he  N normal mode t o  Eq. (1) is nos subjec ted  t o  a 

coordinate  transformation. Far t h e  N normal mode, t h e  new s t i f f n e s s  n a t r i x  is 
t h  * 

* 
This zame r e s u l t  can be  obtained by de r iv i ag  t h e  force  reqtrired t o  give t h e  
base  a u n i t  displacement, successively,  i n  each degree of freedom while holding 
t h e  nodal mass, 
be obzained by requi r ing  n u l l  forces  for rigid-body motion; i .e. ,  

M,, , f txed i n  t h e  absolute  re ference  system. It can a l s o  

from which 

JPL Technical Memorandum 33-380 9 



10 

2 
c c 

t 

I -*w 
I - 

I 
I 
I 

- 1- 
i 

Eq. (14a) serves t o  define the following terms 
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th The new mass Katrix for the pl i.ornal mode is 

1 0 

JPL Techrical Memorandum 33-380 11 



- Tkr Complete Mathematical Model 

The equivalent discrete  model representing S normal modes of the original 

structural subsystem has the s t i f f n e s s  matrix, 

[dq = 

and the mass matrix 

[B] = 

r RFS 1 

N1 

I I  
K I 

I 

- . 
.._ 

K 22 

0 

I t  * where t5e "residual m a s s  matrix, 
H=S 

MmJ M,, 
%Id 

' = [ M R R ]  - [M,, 1 dJ1I 
E q .  (1) becomes transformed to  

* See footnote, page 18. 

I2 JPL Technical Mernorandiim 3 3 - 3 8 0  



The Residual ?lass Matrix 

The mass m a t r i x  of E q .  (1) i s  commonly obtained from an i n i t i a l  Cinite- 

element mathematical model. Its submatrices may be i d e n t i f i e d  as 

t h  where [m] is the  i n i t i a l  m a s s  matrix of r order ,  and, i n  general ,  is  non- 

[+R] is t h e  ( r  X ) modal matr ix  f 3 r  r i g i d  body modes 
c 

[QNN] is t h e  modal mat r ix  f o r  t h e  normal modes. 

If a l l  modes are chosen f o r  use i n  Eq. (1) , [+u] is a square non- 

s ingu la r  matrix,  a 3  hence can be  inver ted .  
id 

It caL be deduced from the  form of M, i n  Eq. (10) t h a t  i f  a l l  of the 

modes are r e t d n e d ,  then 
- I  

Indeed, i f  Eqs. (21) a d  (22) are s u b s t i t u t e d  i n  Eq. (231, 

= [+Rr [??I] [ bR] ;as defiiled i n  Eq. 20) 

I f ,  as a matter of engineering judgment, S modes are chosen ( S d  r ) , 
I1  

I 
t h e r e  is a ' ' ieqidual  mass matrix,  

c 

Eq. (24) is completely general;  its v a l i d i t y  does not depend G i i  che renormal- 

iza t io i l  decribed by Eqs. (3) and (4). 

J P L  Technical Memorandum 33-380 13 



The r e s i d u a l  mass matrix must be added a t  t he  base t o  provide s imulat ion 

of the  t o t a l  rigid-body mass proper t ies .  

i f  t h e  computer program t o  be used accommodates non-diagonal mass matrices. 

However, two a l t e r n a t e  methods are described. 

The f i r s t  and phi losophical ly  most obvious i s  t o  choo3e a s u f f i c i e n t  

This addi t ion  may be done d i r e c t l y  

number of normal modes t o  make the  r e s idua l  m a s s  terms negl ig ib le .  This is 

not necessar i ly  a prr-ctical o r  des i r ab le  course. 

An a l t e r n a t i v e  method is  t o  add as many add i t iona l  spring-mass elements 

as t he re  are rigid-body degrees of freedom; and t o  ass ign  t o  each a frequency 

w e l l  above t h e  modal frequencies of interest o r  of v a l i d i t y  f o r  t h e  t o t a l  

s t r u c t u r a l  system. T h e [ G ] m a t r i x  f o r  t h e  added 

r e l a t i o n  
1 -. 

systems is contained i n  t h e  

( 2 5 )  

* th normal mode and t h e  L th  r i g i d  body Eode [from Eq. ( 5 )  ] where, f o r  t h e  b* 
M 9 -  (26) N 

(u.seA= 4 . . . 6 i f  = 0 )  

Eq. ( 2 5 )  may be w r i t t e n  as 

where t h e  ind ices ,  k , i , p e r t a i n  t o  rigid-body modes and where t h e  row and 

column indices  have been included i n  matrix l a b e l s  t o  maintain t h e  

correspondence t o  the  phys ica l  problem. 

The matrix equation (27) can be writ ten as 

[Me,,] = [ D I r [ D l  

14 JPL Technical Memorandum 33- 380 



L e t  [D] b e  the  Choleski decomposition of [%,I, 

Then 
I/ 

The matrix element 

Thus, use of Eqs. ( 2 9 )  and (30) i n  Eq. (26) gives 

I&= 3 2 

or 

Subs t i tu t ion  of Eq. (31) i n t o  e.!ersits ,,f Eq (29) gives,  with use of Eq. (30), 

(32) 

(use &. = 4 . . 6 i n  E q s .  (31; and (32) i f  c=  0) 
Thus t he  added 'high-frequency" modes, of number equal t o  t h e  rank of [ M,,] , 

completely account f o r  t h e  r e s idua l  mass elements r e s u l t i n g  from truncat ion.  

The generalized =asses fo r  these  normal modes are obtained from Eq. (31), and t h e  

D "r igid-elast ic"  coupling matrix is obtained from E q .  (32). 

JPL Technical Memorandum 33-380 15 



APPLI CATI3NS - 
The f i r s t  documented appl ica t ion  of t h e  renormalization Loncept 

described herein appears i n  R e f .  (1). The only ava i l ab le  matheqat! c a l  

Fgdels of t h e  cant i levered Ranger and Surveyor s p x e c r a f t  were obtained 

from modai surveys by appl ica t ion  of Eq. (14), wherein the  2' were the  

measured mode shapes assoc ia te2  with physical  i t e n s  of known mass proper t ies .  
N 

In t h e  case of kanger, only the  f i r s t  can t i l eve r  t o r s ion  mode was of i n t e r e s t .  

In the  case of Surveyor, :line modes having s i g n i f i c a n t  coupling with "rigid- 

body r o l l "  were chosen. Since t h e  launch vehic les  i n  both cases were repre- 

sented by d i s c r e t e  torsion-spring and moment-of-inertia elements, i t  w a s  

expedient t o  represent t he  normal modes of t he  spacecraf t  by equivalent 

spring-mass systems. 

The A t l a s  booster  engines and t h e  Centaur main engixi s were remodeled 

i n  a manner t o  assure  only antisymmetric motions. 

coupled with rigid-t3dy r o l l  of t h e  axis containing the  two gimbal blocks; 

Each engine mode was 

product-of-inertia terms provided the  coupling. 

antisymmetric mode or the  engine p a i r  was representable  as a single. spring- 

On renormalization, each 

mass sys tem,  and a r e s idua l  mass (moment-of-inertia) was attached t c  the  node 

i n  the  plane of t h e  gimbal blocks t o  preserve t h e  t o t a l  rigid-body proper t ies .  

Perhaps the  most usefu l  fa.cet of t h e  concepts presented herein is the  

vector  with physical "feel" provided t o  t h e  analyst by assoc ia t ing  the M 

base react ions and by using t h e  r e s idua l  mass matr ix  as a guide i n  truncation. 
RN 
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As an example, a mathemacical model of a spacecraf t  and i t s  s t r u c t u r a l  

adapter  t o  the  launch veh ic l e  w a s  developed f o r  use  with t h e  SA'*'IS Computer 

Program (Refs. 2 thrcugh 5 ) .  The mass matr ix  of t h i s  model w a s  of 139th order .  

The f i r s t  42 normal modes were computed, along with the  Mm, and P.im matrices. 

Addit ional ly ,  t h e  7 i d u a l  m a s s  matrices were con uted f o r  t h e  n m t e r  of 

consecutive modes from mode 1 through mode 42. Table 1 lists the  main- 

diagonal elements, Mii 

mode, and lists? a l so ,  t h e  A Mii a ssoc ia ted  with each added mode. 

f i rs t  moc!e, t h e  general ized mass asscxia ted  with t h e  x ( t r a n s l a t i o n a l )  

coordinate ( i . e . ,  M22) accounts f o r  82% of t h e  rigid-body mass; and t h e  

general ized m a s s  assoc ia ted  with the  x ( r o t a t i o n a l )  coordinate  (i.e., 

accounts f o r  72% of the  rigid-body monient-of-inertia about t h e  x1 axis 

(see Fig. 4 ) .  

of the  r e s idua l  mass matrices through the  14th 

R .- 
I=? :he 

c' 

2 

"44) 4 

The f i r s t  t e n  mddes contain l i t t l e  e f f e c t i v e  m a s s  i n  t h e  long i tud ina l  

(x ) direetiozi; t h e  11th and 12 th  modes account f o r  85% of t h e  rigid-body 3 

mass e f f e c t i v e  i n  t h e  x d i rec t ion .  3 

The ANii of Table I permit q u a l i t a t i v e  desc r ip t ion  of t h e  charac te r  

of a m-..e without any d e t a i l e d  knowledge of mode shape. Those modes f o r  

which a l l a  Mii are s m a l l  are termed " loca i  mcdes," i n  which some comporient 

o r  appendage is the  p r i n c i p a l  cont r ibu tor .  

This type of information can be of use to  t h e  ana lys t  who is undertaking 

a dynamic loads ana!ysis of t h e  e n t i r e  space vehic le .  I f  t h e  ob jzc t ive  is 

t o  c k t a i n  a preliminary assessment of loads on t h e  l a u w h  veh ic l e ,  economies 

can be e f f ec t ed  by de le t ing  " loca l  modes," with placement of t h e  appropr ia te  

r e s idua l  masses at the base of t h e  spacscraft. 

JPL Technical Memorandum 13-380 17 



During a modal s l t r ~ l y  cf the  Mariner Mars '71 Development Test Model. 

an on-Eite computer termi-ial was used t o  make an o r t h o g m a l i t y  e k c k  of 

measured modes a f t sy  ccnplet ion of t he  survey of t he  second snd each subse- 

quent mode. The res idua l  mass matyix was a l s o  computed. Int,pection of t h i s  

matr ix  served as  a guide i n  shaker placenent Eo: exci ta t . ion of a new 10d2. 

It a l s o  servdd as a practical  i n d i c a t o r  of t h e  number G f  modes t o  b e  surveyed. 

CONCLUSION 

The concepts presenLeci he rc in  are intended t o  a i d  the  phyFical under- 

s~zz2i i ig  ~f the dynamic inf luence  of 8 s m p l e x  substr.lp:.:r.: a t  i t s  poin t  c;f 

attachment. t o  another snbstructin-e. There may h e  i n s t a l  i n  which i t  is 

convenient, fo r  occ reason o r  another ,  t o  adopt the  equivalent  spring-mass 

approach !:hroug;;I? the described renormalization process. 
* -  ' 

The concept of t he  r e s idua l  mass matr ix ,  t7hic-I is  not dependnnt on 

any p a r t i c u l a r  modal normalization, is, r imethe less ,  a byproduct of t h e  

modeling c o x e p t .  

engiceering judgmsnts r e l a t i n g  t o  modal tryincation i n  ana lys i s  a d  t o  the  

It has proved t o  be very usefu' :!n t i e  exercis;: of 

r e q u i s i t e  completeness of a madai v i b r a t i o n  survey. 

*Footnote: 

After  t he  completion of t he  d r a f t  If t h i s  memcrandun, i t  came t o  the  
authors '  a t t e n t i o n  t h a t  Schwendler zxld Ms-Neal, i n  Ref. 11, def ine  and use 
"res idua l  f l e x i b i l i t y  matrices." Morewwr, i n  wr i t i ngs  not  i n  ;he open 
l i t e r a t u r e ,  MacNeal has  i ~ ~ d  t he  term "res idua l  mass matrix" with exac t ly  
the  same d e f '  i t i o n  as g i l m  r e i n .  

JPL Technical Memorandum 33-380 



-
-
 %is 

c--- 

ID
 

9
) 

6%
; 

z
x

 

n
o
\
+
 

-
!

e
m

 
E

- 

n
 

r
l 

r
l 

f- 

JP
L

 T
ech

n
ical M

em
orandum

 33-380 



References 

1. Garba, J .  A . ,  Gayman, W .  H . ,  and GJada, B . ,  Computation of Torsional 
Vibration Modes of Ranger and Surveyor Space Veh ic l e s ,  
Technical Menorandun 33-277. Jet Propulsion Laboratory, Pasadena, 
Ca l i f . ,  A p r i l  1, 1968. 

2. ':eiosh, R. J. ,  Diether,  P. A., and Brennan, X., S t r u c t u r a l  Analysis 
and Matrix I n t e r p r e t i v e  System (SAMIS) Program Report, Technical 
Mmorandum 33-307, Rev. 1. Jet Propulsion LaSoratory, Pasadena, Calif.,  
Dec. i5 ,  1966. 

3. Melosh, R. J. and Chris t iansen,  H. N . ,  S t r u c t u r a l  Analysis and Matrix 
I u t e r p r e t i v e  System ( S K I S )  Technical Report, Technical Memorandum 33-311. 
Jet Propulsion Laboratory, Pasadena, Ca l i f .  , 501 . 1, 1966. 

4. L a g ,  1. E.,  Structural .  Analysis and Matrix I n t e r p r e t i v e  System (SAMIS) 
User Repar t ,  Technical Memorandum 33-305. Jet Propulsion Laboratory, 
Pasadena, C a l i f . ,  Mar. 1, 1967. 

5. Bamford, R. M.,  Application of S t r u c t u r a l  Analysis and ,Xat:rix In te r -  
p r e t i v e  System, Technical Xemorandum 33-399, Rev. 1. Jet Propulsion 
Laboratory, Pasadena, Ca l i f . ,  Mar. 15, 1970. 

6. Timoshenko, S., Vibrat ion Problems i n  Engineering, Third Ed., Chap V. 
D. Van Nostrand and C o . ,  1955. 

7. Burington, Richard S., Handbook of Mathematical Tables and Formulas 
(#417). Handbcok Publ i shers ,  Inc. ,  1948. 

8. Hamming, Richard W., Numerical Methods fcr S c i e n t i s t s  and Engineers 
(P. 50). M c G r a w - H i l l ,  1962. 

9. Young, Dana, and Felgar ,  Robert 1'. , Jr., Tables of  Characteristic 
Fmct ions  Representing Normal Mcdes of Vibrat ion of a Beam. 
of Texas Publicat ion No. 4913, J u l y  1, 1949. 

The University 

10. Felgzr ,  Robert P . ,  Jr., Fornulas f o r  I n t e g r a l s  Containing Charac te r i s t i c  
Functicxs of a Vibzating Beam. The Universi ty  of Tzxas Ci rcu lar  No. 14, 
Bureau of Engineoring Research, 1950. 

11. ASD-TK-61-680, Optimum S t r u c t u r a l  Representation i n  Aeroe las t ic  Analyses, 
March, 1962. (Authors: Robert G.  Schwendlsr and Richard H. MacNeal). 

20 JPL Technical Memorandum 33-380 



APPENDIX 1 

l l l l s t r a t i v e  Case of a S ingle  Base-Reacticn Component 

Consider the  l o n g i t u d i m l  modes of a "fixed-free" uniform bar  of length 1 
and weight per  un i t  length,  r. 
Timshenico's notat ion)  t h a t  t he  c i r c u l a r  frequency of the i t h  normal mode i s  

From Ref. ( 6 ) ,  !.t can be shown (using 

where 

The nodal  amplitude a t  a d is tance  z- from t h e  roo t  is 

where D f  is, i n  general ,  an a r b i t r a r y  norma1ixati.s f ac to r .  

Here i t  w i l l  be shown t h a t ,  for each mode, a value of Di exists t o  give 

base r eac t ion  equivalence between t h e  cmt inuous  system and a s imple spring-mass 

model . 
The general ized mass of the i t h  mode is 

where 4 5 f/T . Use OF Eq. (1.2) in Eq. (1.3) leads t o  

The axial load i n  t h e  i t h  mode at  s t a t i o n  is 

3'PL Technical Memorandum 33-380 21 



A t  the base, 

where x is  an arbitrary rigid-body displacement. 

Tke integral in  Eq.  (1  <) i s  recognized as the "rigid-zlast ic" coupling term 

i n  the partitioned matrix 

[MI = i I 
- I - -  - - -  

I f l L L  

wherein 

With x, = 1.0,  

Use of Eq.  (1.2) ir  the integral  of  Eq. (1 .6)  gives 

- L zHl P; - -- ir 

T o  replace the i t h  mode of the continuous system with a simple system as 

sketched, i t  i s  necessary only t o  specify a modal renormalization that equates 

22 



the inert ia  force t o  the force acting on the base: 

i.e. 

'L -- L -  

id L L  
-?. M. .  = y; MfL 

Th*cls, eqilating (1.4) and (1.8) gives 

4 
- -2- .  0. c - I :?Y (1.10) 

- J  ( I * =  1, 3, 5, - 

and tne mass matrix becomes 

[VI] = 

It is  convenient to rewrite Eq. (1.11) as 

JPL Technical Memorandum 33-380 23 



For the i n f i n i t e  s e t  of e l a s t i c  modes 

From R e f .  (7) 
/ 

( 1 . 1 3 )  

From Ref. (8), the sum of the i c f i n i t e  series 

Addin2 ?-:.ice szr ies  gives 

(1.15) 

or 

24 

(1.16) 

(1.17) 

In most practical engiceering s i tuat ions ,  use of a re lat ive ly  few of the 

lower modes su f f i ces .  

correct, a residual mass is  added to the base. 

Thus, i n  order to keep the rigid-body m a ~ s  properties 

JPL Technical Memorandum 33-380 



(1.18) 

The equivalent mathematical model of the "fixed-free" uniform bar is  sketched 

with increasing i n  Figure 1.1, which a l so  shows the decrease i n  

number 05 mcdes se lected .  

JPL Technical Memorandum 33-380 25 
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APPENDIX L 

I l l u s t r a t i v e  Case of Two Base-Reaction Components 

Consider the  bending modes of a cant i levered unifcrm beam, for which 

there b i l l  be t ransverse shear  and bending moment t o  be rrdcted by the  base. 

References 9 and 10 deal  with c h a r a c t e r i s t i c  functions of uniform 

beams w i t h  various boundary conditions.  The modal no-malizat ion has been 

chosen such t h a t ,  for the  nth mode, 
U 

(.?;@)d% - -1 
0 

where P is t h e  beam length.  LetY be t h e  mass per  u n i t  length.  Then the  

generalized mass i n  t h e  nth mode As 

- 
Mrl, 

0 
The shear  a t  t h e  beam root  is 

where $( EA is an a r b i t r a r y  rigid-body t r aas l a t fon .  

JPL Technical Memorandum 33-380 27 



In t h i s  context, the integral  of Eq .  ( 2 . 3 )  i s  the  tttranslation-elastic't  coupling 

- ,ass matrix 

wll = 

The bending moment at 

where = 6$% the 

s tat ion 3 for an arbitrary 

bl.2 R 

P! !R  

0 

the root 

. 
* 

is 

28 

transversc displacement of an element of the beam st 

rotation, @E , about the root. Thus, the integral  

of Eq. (2.5) i s  the "rotation-elastic" coupling term 

0 

JPL Technical Memorandum 33-380 



S i n c e  the normalization of 20 rigid-body y;Ges is  optional,  let  @E 

and b e  unity. Then 
P 

a 7-ul = (&td% 
0 

U 

Now 

6 

From i: tegral  1 of 3ef. 10 

From Integral 25 of Ref. 10 

R e f .  9 tabulates values of 4; and k'P ' 

(2.7) 

(2.10) 

(2.11) 

JPL Technical Memorandum 33-380 29 



Now, to represent t h e  nth normal made by a simple spring-mass system, 

f i r s t  choose a rcnormnliTation factor - 

Then the new matrix elements are 

(The shear at the base i s  now "matched.") 

The Sase moment majr be  matched by placing the lumped mass at s tat ion 

(2.12) i 
(2.13) 

. (2.14) 
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In t h e  model? t h i s  placeQent may be dme in at least t-do ways: 

/' 

1 / 
/ 
/ 

/ 
/ 

1 

0 Mrlrl 

massless beam of r ig id i ty ,  
2 3 I 

It can be s h o w  that 

N 

JPL Technical ,r,iemorarrd\tm 33-380 
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For a f i n i t e  numbcr of modes, fd , a r e s i d c a l  mass m u s t  b e  attached t o  t h e  

b a s e .  

N 
= Vi. - \- +A 

RES. TT t7 i7 
iM 

1 

By placing th is  %ass a t  

(2.18) 

(2.19) 

the static-moment equivalence is  preserved. 

Tn general, the rigid-bcdy moment-of-inertia equivalerlce may require the 

addition of L centroidal moment-of-inertia. 

or 

m 

The [a] and [M] riatrices for the f i r s t  f i v e  nomsi  modes of a :;niform 

cantilever beam are presented below: 
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[v] = m 

I 
1 -P - .78299 .43394 .25443 .18190 .14147 

2 I 
I 

1 
d Z  i .568831 .090767.! .032416! .015552! .JlOOOid 
3 1  I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 0 0 0 0 

1 0 0 0 

1 0 0 
( s m  

1 0 

1 

I 

1 I r  - 8  .61307 .18830 .064735 .033088 -0i0014 

- I -445391 .039387/ .0082476/ .003008d .0014157k 
3 !  

-61307 0 0 0 I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.18830 0 0 0 

.0647?5 0 0 

033088 0 

,020014 

(2.2 

(2.2 
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Table 2 . 1  gives a description of residual mass irquirenents as a function 

of the  number, N ,  oC uniform-beam e l a s t i c  modes chosen. i t  i l l u s t r a t e s  t h e  

aFproach of the residual uass t o  zero as N increases. 

A model representation is  given i n  Fig. 2 . 1 .  

M 

l? 
RES 

TT 

- 

.3869 

.1986 

.I339 

. 1008 

.0808 

X 
RES - 
i 

.1411 

.0767 

.0521 

-0394 

,0316 

(1 1 
RES 0 

M 
RR 

.00616 

.00103 

. 000 31 

. 00010 

.WOO4 

TABLE 2.1 RESIDUAL ;-ASS UESCRIPTIONS AS A FUNCTION OF 
THE NUMBER OF ELASTIC MODES CBOSEN. 

FIG. 2 . 1  MATHEMATICAL MODEL OF THE FIRST N NORMAL MODES OF 
A UNIFORM CANTILEVER BEAM. 
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The s t i f f n e s s  matrix associated w i t h  t h i s  system is 

2 

where 

I 
I 
I 
I 

I 
1 

1 
I 

-1 - -  

0 

d l i s t e d  i n  Ref. From numerical values cf F1 

for the first five modes i s  

Kl= 

where 

K* 

9 , the s t i f f n e s s  matrix 

I 
I 

I 
I 

0 1  0 

I 
I 

I 
I 
I 
f 
I 
I 
i 
I 

I 
I 
1 
I 
I 
1 

I -6131 

0 1  

! 

7.395 

19 . 33 
39.12 

64.56 
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Application nf the coordinate transformation of E q s .  (14) and (15) leads to 

1 

[4’] = 

1 a 
I 

-64.67 ! 131.7 12.66! j -.6131 -7.395 -19.93 -39.12 i 

and 

= m  

r 
I 
1 
I 
1 
I 

I 

! 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
i 

.6131 

GYM) 

7.395 

19.94 

39.12 

64.67 

0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.6131 

1883 

.06474 

.03309 1 .02001 
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As a fu r the r  i l l u s t r a t i o n ,  assume t h a t  only t h e  f i r s t  t h ree  normal modes of 

t h e  uniform beam are t o  be chosen, and t h a t  the  t runcated modes are t o  be represeqted 

by two addi t iona l  spr ing  mass systems of  a r b i t r a r i l y  high frequency. 

From Eq. ( 2 8 j ,  t h e  Chcleski decomposition matrix is wri t ten  as t h e  upper 

t r i a n g u l a r  zatrix 

[D] = 
c uR D i4.T 

0 D*K 

(T: t r a r s l a t i o n )  

(l?: ro t a t ion )  

The r e s idua l  m a s s  matrix, determined from values  l i s t e d  i n  e i t h e r  Eq. (2.21) 

o r  (2.22) by use of Eq.. (24), is 

Then, by Eq. (28) 

.00697 I .00697 

.00047 
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f rcm which 

1 1  
D2 = a  

47 

From Eq. (32) and the above, 

**l- = J q ,  J 

/ 2 

0 
2 

From Eq. (31) 
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In matrix form, for the two added degrees of freedom, 

M**  M 

= m  

two rows and colums of Eq. (2.22), and making the coordinate transformation 

indicated by Eqs. (15) and (14) leads to 
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and, w i t h  the original frequency ratios  of modes 4 and 5 arbitrari ly  retained for 

the two residual-pass modes, 

[ f ] =  K 

40 

186.3 12.77.! i -.6131. -7.395 -19.93 -158.31 0 

k' -1.547 1 -2.540 f - 8 . 2 4 1 1  -.3463 I"  ' 
1: 

1.7291 -.4454 
I 
I 

I 
I 
I 
I 
f 
I 
I 
I 
I 
I 
I 
I 
I 

7.395 

19.93 

158.31 
,- ? 

.3463 i 
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